Bibliographie

Liste, qui tente d’être exhaustive, des travaux publiés. Dernière mise à jour le 14 October, 2024.

Journaux

[1] D. Barth, T. Mautor, D. Watel, et al. “Configuring an heterogeneous smartgrid network: complexity and approximations for tree topologies”. In: Journal of Global Optimization (2023), pp. 1-35.

[2] D. Barth, T. Mautor, D. Watel, et al. “A polynomial algorithm for deciding the validity of an electrical distribution tree”. In: Information Processing Letters (2022), p. 106249. DOI: https://doi.org/10.1016/j.ipl.2022.106249.

[3] D. Barth, T. Mautor, A. . Moissac, et al. “Optimisation of electrical network configuration: complexity and algorithms for ring topologies”. In: Theoretical Computer Science 859 (2021), pp. 162-173. DOI: https://doi.org/10.1016/j.tcs.2021.01.023.

[4] W. J. Ehounou, D. Barth, A. . Moissac, et al. “Minimizing the Hamming distance between a graph and a line-graph to discover the topology of an electrical network”. In: J. Graph Algorithms Appl. 24.3 (2020), pp. 133-153. DOI: https://dx.doi.org/10.7155/jgaa.00522.

[5] S. . Ilemo, D. Barth, O. David, et al. “Improving graphs of cycles approach to structural similarity of molecules”. In: PloS one 14.12 (2019), p. e0226680. DOI: https://doi.org/10.1371/journal.pone.0226680.

[6] K. . Guiban, A. Rimmel, M. Weisser, et al. “Completion of partial Latin Hypercube Designs: NP-completeness and inapproximability”. In: Theoretical Computer Science 715 (2018), pp. 1-20. DOI: https://doi.org/10.1016/j.tcs.2018.01.014.

[7] K. . Guiban, A. Rimmel, M. Weisser, et al. “The first approximation algorithm for the maximin Latin hypercube design problem”. In: Operations Research 66.1 (2018), pp. 253-266. DOI: https://doi.org/10.1287/opre.2017.1665.

[8] D. Watel and M. Weisser. “A practical greedy approximation for the directed steiner tree problem”. In: Journal of Combinatorial Optimization 32.4 (2016), pp. 1327-1370. DOI: http://dx.doi.org/10.1007/978-3-319-12691-3_16.

[9] D. Watel, M. Weisser, C. Bentz, et al. “Directed Steiner trees with diffusion costs”. In: Journal of Combinatorial Optimization 32.4 (2016), pp. 1089-1106. DOI: https://doi.org/10.1007/s10878-015-9925-3.

[10] B. LeCun, T. Mautor, F. Quessette, et al. “Bin packing with fragmentable items: Presentation and approximations”. In: Theoretical Computer Science 602 (2015), pp. 50-59. DOI: https://doi.org/10.1016/j.tcs.2015.08.005.

[11] D. Watel, M. Weisser, C. Bentz, et al. “An FPT algorithm in polynomial space for the Directed Steiner Tree problem with Limited number of Diffusing nodes”. In: Information Processing Letters 115.2 (2015), pp. 275-279. DOI: https://doi.org/10.1016/j.ipl.2014.09.027.

[12] D. Poulain, J. Tomasik, M. Weisser, et al. “A Packing Problem Approach to Lightpath Assignment in an Optical Ring”. In: The Computer Journal 57.8 (2014), pp. 1155-1166. DOI: http://dx.doi.org/10.1093/comjnl/bxt050.

[13] V. Reinhard, J. Cohen, J. Tomasik, et al. “Optimal configuration of an optical network providing predefined multicast transmissions”. In: Computer Networks 56.8 (2012), pp. 2097-2106. DOI: http://dx.doi.org/10.1016/j.comnet.2012.02.005.

[14] M. Weisser and J. Tomasik. “Automatic induction of inter-domain hierarchy in randomly generated network topologies”. In: SIMULATION SERIES 39.2 (2007), p. 77.

Conférences, Thèse, Autres

[1] Y. Aboulfath, D. Watel, M. Weisser, et al. “Maximizing Minimum Cycle Bases Intersection”. In: International Workshop on Combinatorial Algorithms. (Ischia, Italia). Accepted paper. Springer. ACM, Jul. 2024.

[2] S. N. ilemo. “Algorithmique de graphes pour la similarité structurelle de molécules et de réactions”. Theses. Université Paris Saclay, Oct. 2020. https://theses.fr/2020UPASG028.

[3] K. . Guiban. “Hypercubes Latins maximin pour l’echantillonage de systèmes complexes”. Theses. Université Paris Saclay (COmUE), Jan. 2018. https://theses.hal.science/tel-01722842.

[4] D. Watel, M. Weisser, and D. Barth. “Parameterized complexity and approximability of coverability problems in weighted Petri nets”. In: International Conference on Application and Theory of Petri Nets and Concurrency. Springer. 2017, pp. 330-349.

[5] D. Watel and M. Weisser. “A note on the inapproximability of the Minimum Monotone Satisfying Assignment problem”. working paper or preprint. Mar. 2016. https://hal.archives-ouvertes.fr/hal-01377704.

[6] D. Watel. “Approximation de l’arborescence de Steiner”. Theses. Université de Versailles-Saint Quentin en Yvelines, Nov. 2014. https://theses.hal.science/tel-01130029.

[7] D. Watel and M. Weisser. “A practical greedy approximation for the Directed Steiner Tree problem”. In: COCOA 2014. Maui, Hawaii, United States, Dec. 2014, p. nc. https://hal-supelec.archives-ouvertes.fr/hal-01067151.

[8] D. Watel and M. Weisser. “Le problème de l’arborescence de Steiner dans les réseaux tout-optiques”. In: ALGOTEL 2014-16èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications. 2014, pp. 1-4.

[9] D. Watel, M. Weisser, C. Bentz, et al. “Directed Steiner tree with branching constraint”. In: International Computing and Combinatorics Conference. Springer. 2014, pp. 263-275.

[10] D. Poulain, J. Tomasik, M. Weisser, et al. “Minimization of the receiver cost in an all-optical ring with a limited number of wavelengths”. In: Computer and Information Sciences III. Springer, 2013, pp. 239-247.

[11] D. Watel, M. Weisser, C. Bentz, et al. “Steiner problems with limited number of branching nodes”. In: International Colloquium on Structural Information and Communication Complexity. Springer. 2013, pp. 310-321.

[12] J. Tomasik and M. Weisser. “The inter-domain hierarchy in measured and randomly generated AS-level topologies”. In: 2012 IEEE International Conference on Communications (ICC). IEEE. 2012, pp. 1448-1453.

[13] V. Reinhard, J. Cohen, J. Tomasik, et al. “Performance improvement of an optical network providing services based on multicast”. In: Computer and Information Sciences II. Springer, 2011, pp. 239-246.

[14] J. Tomasik and M. Weisser. “aSHIIP: autonomous generator of random Internet-like topologies with inter-domain hierarchy”. In: 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. IEEE. 2010, pp. 388-390.

[15] J. Tomasik and M. Weisser. “Internet topology on AS-level: model, generation methods and tool”. In: International Performance Computing and Communications Conference. IEEE. 2010, pp. 263-270.

[16] Y. Benallouche, D. Barth, S. Karouia, et al. “Efficient micro-mobility with congestion avoiding in two-nodes mobile IP network architecture”. In: 2009 3rd International Conference on New Technologies, Mobility and Security. IEEE. 2009, pp. 1-6.

[17] V. Reinhard, J. Tomasik, D. Barth, et al. “Bandwidth optimization for multicast transmissions in virtual circuit networks”. In: International Conference on Research in Networking. Springer. 2009, pp. 859-870.

[18] M. Weisser, J. Tomasik, and D. Barth. “Congestion avoiding mechanism based on inter-domain hierarchy”. In: International Conference on Research in Networking. Springer. 2008, pp. 470-481.

[19] M. Weisser. “La qualité de service dans le réseau inter-domaine Internet : algorithmes et modélisation”. PhD thesis. Thèse de doctorat dirigée par Barth, Dominique Informatique Versailles-St Quentin en Yvelines 2007. Université de Versailles Saint-Quentin en Yvelines, 2007, p. 1 vol. (131 f.). http://www.theses.fr/2007VERS0032.

Thèses coencadrées et soutenues

[1] S. N. ilemo. “Algorithmique de graphes pour la similarité structurelle de molécules et de réactions”. Theses. Université Paris Saclay, Oct. 2020. https://theses.fr/2020UPASG028.

[2] K. . Guiban. “Hypercubes Latins maximin pour l’echantillonage de systèmes complexes”. Theses. Université Paris Saclay (COmUE), Jan. 2018. https://theses.hal.science/tel-01722842.

[3] D. Watel. “Approximation de l’arborescence de Steiner”. Theses. Université de Versailles-Saint Quentin en Yvelines, Nov. 2014. https://theses.hal.science/tel-01130029.